Capillary-scale polarimetry for flowing streams.
نویسندگان
چکیده
A micro-polarimeter with a 40 nL probe volume was configured so that it is compatible with capillary-scale flowing stream analysis. The optical configuration consists of two polarizing optics, a capillary, a laser source and a photodetector which is very simple to configure with low cost components. This unique polarimeter is based upon the interaction of a linearly polarized laser beam and a capillary tube, in this case one with an inner diameter of 250 microns. Side illumination of the tube results in a 360 degrees fan of scattered light, which contains a set of interference fringes that change in response to optically active solutes. Solutes that exhibit optical activity are quantifiable and are detected by analyzing the polarization state of the backscattered light. The ability of the instrument to make extremely sensitive optical activity measurements in flowing streams is shown by the determination of (R)-mandelic acid, with a detection limit of 66 x 10(-6) M (507 x 10(-12) g), and the non-optically active control, glycerol. Additionally, the detector was configured to minimize refractive index perturbations.
منابع مشابه
EFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملSpectral characterization of fine-scale wind waves using shipboard optical polarimetry
Fine-scale sea surface waves are of profound importance to a number of air-sea interaction processes. Due to a number of reasons, there exists a great degree of difficulty in obtaining quality in situ observations of these waves. This paper presents the application of a shipboard wave-sensing method toward the following quantifications: regime-specific contribution to sea surface slope and sens...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملA Computational Study of Oxygen Transport in the Body of Living Organism
Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...
متن کاملMeandering rivulets on a plane: a simple balance between inertia and capillarity.
Experiments on streams of water flowing down a rigid substrate have been performed for various plate inclinations and flow rates, and we focused on the regime of stationary meanders. The outcome is that (i) the flow is highly hysteretic--the shape of the meanders varies with flow rate only for increasing flow rates, and the straight rivulet regime does not appear for decreasing flow rate, and (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 126 5 شماره
صفحات -
تاریخ انتشار 2001